INTEGRATED CIRCUITS

DATA SHEET

SAA7335 DSP for CD and DVD-ROM systems

Preliminary specification Supersedes data of 1997 Aug 11 File under Integrated Circuits, IC01 2001 apr 05

SAA7335

FEATURES

- Compatibility with CD-I, CD-ROM, MPEG-video DVD-ROM and DVD-video applications
- · Designed for very high playback speeds
- Typical CD-ROM operation up to n = 12, DVD-ROM to n = 1.9, maximum rates (tbf)
- Matched filtering, quad-pass error correction (C1-C2-C1-C2), overspeed audio playback function included (up to 3 kbytes buffer)
- Lock-to-disc playback, Constant Angular Velocity (CAV), pseudo-Constant Linear Velocity (CLV) and CLV motor control loops
- Interface to 32 kbytes SRAM for DVD error correction and de-interleave
- Sub-code/ header processing for DVD and CD formats
- Programmable HF equalizer
- In DVD mode it is still compatible with Philips block decoders
- Sub-CPU interface can be parallel or fast I2C-bus
- On-chip clock multiplier.

GENERAL DESCRIPTION

This device is a high-end combined Compact Disc (CD) and Digital Versatile Disc (DVD) compatible decoding device. The device operates with an external 32 kbytes S-RAM memory for de-interleaving operations. The device provides quad-pass error correction for CD-ROM applications (C1-C2-C1-C2) and operates in lock-to-disk, CAV, pseudo CLV and CLV modes.

In DVD modes double-pass C1-C2 error correction is used which is capable of correcting up to 5 C1 frame errors and 16 C2 frame errors.

The SAA7335 contains all the functions required to decode an EFM or EFM+ HF signal directly from the laser pre-amplifier, including analog front-end, PLL data recovery, demodulation and error correction. The spindle motor interface provides both motor control signals from the demodulator and, in addition, contains a tachometer loop that accepts tachometer pulses from the motor unit.

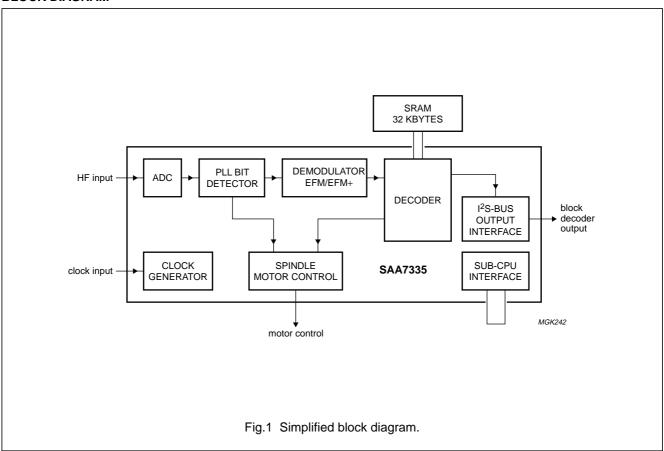
The SAA7335 has two independent microcontroller interfaces. The first is a serial I^2C -bus and the second is a standard 8-bit multiplexed parallel interface. Both of these interfaces provide access to a total of 32×8 -bit registers for control and status.

This data sheet contains an descriptive overview of the device together with electrical and timing characteristics. For a detailed description of the device refer to the user guide "SAU/UM96018".

Supply of this CD/DVD IC does not convey an implied license under any patent right to use this IC in any CD or DVD application.

QUICK REFERENCE DATA

SYMBOL	PARAMETER	MIN.	TYP.	MAX.	UNIT
V _{DDD}	digital supply voltage	4.5	5.0	5.5	V
I _{DDD}	digital supply current	_	70	300	mA
V_{DDA}	analog supply voltage	4.5	5.0	5.5	V
I _{DDA}	analog supply current	_	70	300	mA
f _{xtal}	crystal input frequency	4	25	tbf	MHz
T _{amb}	operating ambient temperature	-20	_	+70	°C
T _{stg}	storage temperature	-55	_	+125	°C


DSP for CD and DVD-ROM systems

SAA7335

ORDERING INFORMATION

TYPE		PACKAGE				
NUMBER	NAME	DESCRIPTION	VERSION			
SAA7335GP	LQFP100	plastic low profile quad flat package; 100 leads; body $14 \times 14 \times 1.4$ mm	SOT407-1			

BLOCK DIAGRAM

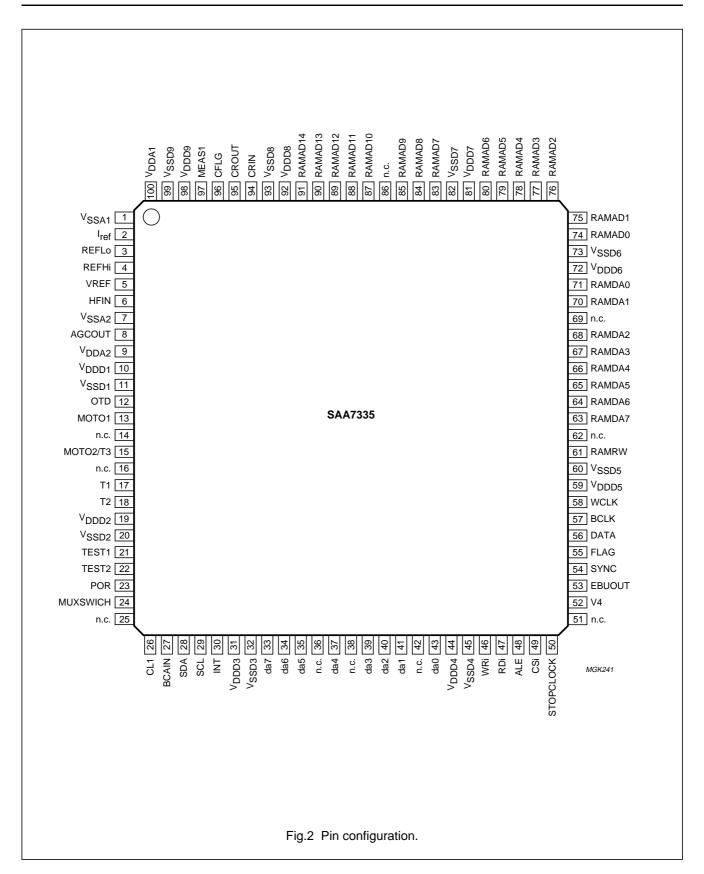
SAA7335

PINNING

SYMBOL	PIN	TYPE	DESCRIPTION
V _{SSA1}	1	supply	analog ground 1
I _{ref}	2	I	analog current reference input for ADC
REFLo	3	I	analog low reference input for ADC
REFHi	4	I	analog high reference input for ADC
VREF	5	I	analog negative input
HFIN	6	I	analog positive input
V _{SSA2}	7	supply	analog ground 2
AGCOUT	8	0	analog test pin output
V _{DDA2}	9	supply	analog supply voltage 2
V _{DDD1}	10	supply	digital supply voltage 1
V _{SSD1}	11	supply	digital ground 1
OTD	12	I	off track detect input
MOTO1	13	0	3-state motor control output
n.c.	14	_	not connected, reserved
MOTO2/T3	15	I/O	motor control output/tachometer 3 input
n.c.	16	_	not connected, reserved
T1	17	I	tachometer 1 input
T2	18	I	tachometer 2 input
V_{DDD2}	19	supply	digital supply voltage 2
V _{SSD2}	20	supply	digital ground 2
TEST1	21	I	test input 1
TEST2	22	I	test input 2
POR	23	I	power-on reset input
MUXSWICH	24	I	use clock multiplier input
n.c.	25	_	not connected, reserved
CL1	26	0	divided clock output
BCAIN	27	I	BCA input
SDA	28	I/O	sub-CPU I ² C-bus serial data input/output
SCL	29	I	sub-CPU I ² C-bus serial clock input
INT	30	0	sub-CPU interrupt output (open-drain)
V_{DDD3}	31	supply	digital supply voltage 3
V _{SSD3}	32	supply	digital ground 3
da7	33	I/O	sub-CPU data bus bit 7 input/output (parallel)
da6	34	I/O	sub-CPU data bus bit 6 input/output (parallel)
da5	35	I/O	sub-CPU data bus bit 5 input/output (parallel)
n.c.	36	_	not connected, reserved
da4	37	I/O	sub-CPU data bus bit 4 input/output (parallel)
n.c.	38	_	not connected, reserved
da3	39	I/O	sub-CPU data bus bit 3 input/output (parallel)
da2	40	I/O	sub-CPU data bus bit 2 input/output (parallel)

4

2001 apr 05


SAA7335

SYMBOL	PIN	TYPE	DESCRIPTION
da1	41	I/O	sub-CPU data bus bit 1 input/output (parallel)
n.c.	42	_	not connected, reserved
da0	43	I/O	sub-CPU data bus bit 0 input/output (parallel)
V _{DDD4}	44	supply	digital supply voltage 4
V _{SSD4}	45	supply	digital ground 4
WRi	46	I	sub-CPU write enable input (active LOW)
RDi	47	I	sub-CPU read enable input (active LOW)
ALE	48	I	sub-CPU address latch enable input
CSi	49	I	sub-CPU chip select input (active HIGH)
STOPCLOCK	50	0	stop clock output
n.c.	51	_	not connected, reserved
V4	52	0	serial subcode output (for CD)
EBUOUT	53	0	digital audio output
SYNC	54	0	I ² S-bus sector sync output
FLAG	55	0	I ² S-bus correction flag output
DATA	56	0	I ² S-bus serial data output
BCLK	57	I/O	I ² S-bus bit serial clock input/output
WCLK	58	I/O	I ² S-bus word clock input/output
V _{DDD5}	59	supply	digital supply voltage 5
V _{SSD5}	60	supply	digital ground 5
RAMRW	61	0	RAM read/write control output
n.c.	62	_	not connected, reserved
RAMDA7	63	I/O	RAM data bus bit 7 input/output
RAMDA6	64	I/O	RAM data bus bit 6 input/output
RAMDA5	65	I/O	RAM data bus bit 5 input/output
RAMDA4	66	I/O	RAM data bus bit 4 input/output
RAMDA3	67	I/O	RAM data bus bit 3 input/output
RAMDA2	68	I/O	RAM data bus bit 2 input/output
n.c.	69	_	not connected, reserved
RAMDA1	70	I/O	RAM data bus bit 1 input/output
RAMDA0	71	I/O	RAM data bus bit 0 input/output
V _{DDD6}	72	supply	digital supply voltage 6
V _{SSD6}	73	supply	digital ground 6
RAMAD0	74	0	RAM address bit 0 output
RAMAD1	75	0	RAM address bit 1 output
RAMAD2	76	0	RAM address bit 2 output
RAMAD3	77	0	RAM address bit 3 output
RAMAD4	78	0	RAM address bit 4 output
RAMAD5	79	0	RAM address bit 5 output
RAMAD6	80	0	RAM address bit 6 output
V _{DDD7}	81	supply	digital supply voltage 7

SAA7335

SYMBOL	PIN	TYPE	DESCRIPTION
V _{SSD7}	82	supply	digital ground 7
RAMAD7	83	0	RAM address bit 7 output
RAMAD8	84	0	RAM address bit 8 output
RAMAD9	85	0	RAM address bit 9 output
n.c.	86	_	not connected, reserved
RAMAD10	87	0	RAM address bit 10 output
RAMAD11	88	0	RAM address bit 11 output
RAMAD12	89	0	RAM address bit 12 output
RAMAD13	90	0	RAM address bit 13 output
RAMAD14	91	0	RAM address bit 14 output
V_{DDD8}	92	supply	digital supply voltage 8
V _{SSD8}	93	supply	digital ground 8
CRIN	94	I	analog crystal input
CROUT	95	0	analog crystal output
CFLG	96	0	correction statistics output
MEAS1	97	0	front-end telemetry output
V_{DDD9}	98	supply	digital supply voltage 9
V _{SSD9}	99	supply	digital ground 9
V _{DDA1}	100	supply	analog supply voltage 1

SAA7335

7

2001 apr 05

DSP for CD and DVD-ROM systems

SAA7335

FUNCTIONAL DESCRIPTION

Analog front-end

This block converts the HF input to the digital domain using an 8-bit ADC proceeded by an AGC circuit to obtain the optimum performance from the convertor. This block is clocked by ADCCLK which is set by the external crystal frequency plus a flexible clock multiplier and divider block.

PLL and bit detector

This subsystem recovers the data from the channel stream. The block corrects asymmetry, performs noise filtering and equalisation and finally recovers the bit clock and data from the channel using a digital PLL.

The equalizer and the data slicer are programmable.

Digital logic

All the digital system logic is clocked from the master ADC clock (ADCCLK) described above.

Advanced bit detector

The advanced bit detector offers improved data recovery for multi-layer discs and contains two extra detection circuits to increase the margins in the bit recovery block:

- Adaptive slicer: adds a second stage slicer with higher bandwidth
- Run length 2 push-back: all T2 run lengths are pushed back to T3, thereby automatically determining the erroneous edge and shifting the transitions on that edge.

Demodulator

FRAME SYNC PROTECTION CD MODE

This circuit detects the frame synchronization signals. Two synchronization counters are used in the SAA7335:

- 1. The coincidence counter: this is used to detect the coincidence of successive syncs. It generates a sync coincidence signal if 2 syncs are 588 ± 1 EFM clocks apart.
- 2. The main counter: this is used to partition the EFM signal into 17-bit words. This counter is reset when:
 - a) A sync coincidence is generated
 - b) A sync is found within ± 6 EFM clocks of its expected position.

The sync coincidence signal is also used to generate the lock signal which will go active HIGH when 1 sync coincidence is found. It will reset to LOW when, during 61 consecutive frames, no sync coincidence is found.

FRAME SYNC PROTECTION DVD MODE

This circuit detects the frame synchronization signals. Two synchronization counters are used in the SAA7335:

- The coincidence counter: this is used to detect the coincidence of successive syncs. It generates a sync coincidence signal if 2 syncs are 1488 ±3 EFM+ clocks apart.
- The main counter: this is used to partition the EFM+ signal into 16-bit words. This counter is reset when:
 - a) A sync coincidence is generated
 - b) A sync is found within ± 10 EFM+ clocks of its expected position.

The sync coincidence signal is also used to generate the lock signal which will go active HIGH when 1 sync coincidence is found. It will reset to LOW when, during 61 consecutive frames, no sync coincidence is found.

EFM/EFM+ demodulation

8

The 14-bit EFM (16-bit EFM+) data and subcode words are decoded into 8-bit symbols.

2001 apr 05

DSP for CD and DVD-ROM systems

SAA7335

Microcontroller interface

The SAA7335 has two microcontroller interfaces, one serial I²C-bus and one parallel (8051 microcontroller compatible).

The two communication modes may be operated at the same time, the modes are described below:

- 1. Parallel mode: protocol compatible with 8052 multiplexed bus:
 - a) da0 to da7 = address/data bus
 - b) ALE = Address Latch Enable, latches the address information on the bus
 - c) WRi = active LOW write signal for write to SAA7335
 - d) RDi = active LOW read signal for read from SAA7335
 - e) $CSi = active HIGH Chip Select signal (this signal gates the <math>\overline{RDi}$ and \overline{WRi} signals).
- 2. I²C-bus mode: I²C-bus protocol where SAA7335 behaves as slave device where:
 - a) $SDA = I^2C$ -bus data
 - b) $SCL = I^2C$ -bus clock
 - c) I²C-bus slave address (write mode) = 3EH
 - d) I²C-bus slave address (read mode) = 3FH
 - e) Maximum data transfer rate = 400 kbits/s.

MICROCONTROLLER INTERFACE (I²C-BUS MODE)

Bytes are transferred over the interface in single bytes of which there are two types; write data commands and read data commands.

The sequence for a write data command (1 data byte) is as follows:

- Send START condition
- Send address 3EH (write)
- · Write command address byte
- Write data byte
- Send STOP condition.

The sequence for a read data command (that reads 1 data byte) is as follows:

- · Send START condition
- Send address 3EH (write)
- · Write status address byte
- · Send STOP condition
- Send START condition
- · Send address 3FH (read)
- · Read data byte
- · Send STOP condition.

READING AND WRITING DATA TO THE SAA7335

The SAA7335 has 32×8 -bit configuration and status registers as shown in Table 1. Not all locations are currently defined and some remain reserved for future upgrades. These can be written to or read from via the microcontroller interface using either the serial or parallel control bus.

REGISTER MAP

 Table 1
 SAA7335 microcontroller register map

ADD	RESS	NAME	R/W	BIT							
DEC	HEX	NAME		7	6	5	4	3	2	1	0
0	0	PLL_LOCK	W	Lock Oride	Pha_Oset	!	•	PLL_Force_	Ĺ	1	
		PLL_Freq_R	R	PLL measure	ed frequency	(bits 9 to 2)					
1	1	PLL_SET	W	SliceBW		Integ_F0		PLLBW_F1		LP_BW_F3	
		PLL_ASSYM	R	PLL asymme	etry value (8 b	oits)		!			
2	2	PLL_FREQ	W	PLL frequen	cy (8 MSBs)						
		PLL_Jit	R	jitter value (b	oits 9 to 2)						
3	3	PLL_EQU	W	PLL frequen	cy (2 LSBs)	equalizer tap	ο α 1		equaliser tap	α2	
		PLL_Lock_In	R	reserved		1			Long_Symb	F_Lock	In_Lock
4	4	PLL_F_MEAS	W	RL3_EN	reserved	EFM nomina	al setting (101	110)			•
		reserved	R	_	_	_	_	_	_	_	_
5	5	OUTPUT1	W	Fmat(3 to 1)	•	•	WCLK_Op	BCLK_Op	Fmat (0)	SyncSwap (1	and 0)
		reserved	R	_	_	_	_	_	_	_	_
6	6	OUTPUT2	W	V EBU_Valid EBU_On EBU control bits 28, 29 EBU control bits (1 to 4)				•			
		reserved	R	_	_	_	_	_	_	_	_
7	7	OUTPUT3	W	WCLK_H_ Left	Descr_On	Interp_On	CD_ROM_ Header_On	Flag_Pin	Kill Data On	Kill EBU_On	CD_ROM Scrb_On
		reserved	R	_	_	_	_	_	_	_	_
8	8	SEMA1	W	general purp	ose semapho	ore register		•	•		
			R								
9	9	SEMA2	W	general purpose semaphore register							
			R								
10	Α	SEMA3	W	general purp	ose semapho	ore register					
			R								
11	В	INTEN	W	hardware pir	n interrupt ena	able bits (map	to status bits))			
		Status	R	FI_S1	FI_S2	FI_S3	PLL lock	DVD rdy	Mot Ov	Tacho	reserved
12	С	MOTOR1	W	frequency se	t point	•	•	•	•		•
		SLICE1	R	slice comper	nsation value						
13	D	MOTOR2	W	G(2 to 0)			Ki		Kf		
		EYE_Open	R	eye opening	value		•		•		

2001 apr 05

SAA7335

ADDI	RESS	NA 84E	D 04/	BIT							
DEC	HEX	NAME	R/W	7	6	5	4	3	2	1	0
14	Е	MOTOR3	W	FIFO set poi	nt	!	!	!	1	1	
		MTR_F	R	_	_	_	_	_	_	_	_
15	F	MOTO4	W	PWM_PDM	OVF_SW	SW2	SW1	motor servo	control (3 to 0))	
		reserved	R	_	_	_	_	_	_	_	_
16	10	MTR_INTG_L	W	motor integra	ator value (7 to	0 0)	•	1	'	1	'
			R								
17	11	MTR_INTG_H	W	motor integra	ator value (15	to 8)					
			R								
18	12	CLOCKPRE	W	CL1Div	BCLKG_En	Div1 (2 to 0)		Mux 2	Div2 (2 to 0)		
		SUB_C_STAT	R	ready	busy	CRC_OK	err (2 to 0)	!	1	cor fail	reserved
19	13	DECMODE	W	mode			•	reserved		read TOC	reserved
		SUB_C_DATA	R	subcode data	a (7 to 0)					1	
20	14	reserved	W	_	_	_	_	_	_	_	_
		SUB_C_End	R	no meaning	register read	used as a sig	ınal)	1	1	1	•
21	15	ANASET	W	AGC_En	gain set	gain up	gain down	AGC_On	reserved		
		FIFOFILL_L	R	number of C	1 frames in FI	FO			1		
22	16	VITSET	W	slice ON	AdDet ON	FEndAutoS ON					
		BCA_STAT	R	Buff_ Loaded	sync	Buff_ORun					
23	17	TACHO1	W	tachometer r	nultiplier frequ	iency KTacho	(7 to 0)	1	•	1	•
		BCA_DATA	R	BCA data (7	to 0)						
24	18	TACHO2	W	tachometer i	nterrupt trip fr	equency tach	ometer trip (7	' to 0)			
		reserved	R	_	_	_	_	_	_	_	_
25	19	TACHO3	W	servo contro	source	Tacho FRes	Moto2_T3	Fsam	•	TachoInt_LF	reserved
		reserved	R	_	_	_	_	_	_	_	_
26	1A	BCASET	W	BCA_Freq (7	' to 0)	•	•	•	•	•	•
		reserved	R	_	_	_	_	_	_	_	_
27 to 31	1B to 1F	reserved		-	-	_	_	-	-	-	_

SAA7335

READING STATUS INFORMATION FROM THE SAA7335

There are several internal status signals which can be made available on the INT line (see Table 2).

Table 2 Internal status signals; note 1

SIGNAL	DESCRIPTION
FI_S1	change in semaphore register 1 detected
FI_S2	change in semaphore register 2 detected
FI_S3	change in semaphore register 3 detected
PLLlock	channel data PLL lock (not latched) indicates in-lock condition
DVDrdy	DVD header or subcode block is available, reset when SUBREADEND register is read
MotOv	motor overflow, (not latched) indicates when a motor overflow is occurring
Tacho	motor speed is higher (or lower depending on TACHO3 bit 2) than motor set point (defined in TACHO2) this signal is not latched

Note

1. The status signal to be output is selected by interrupt control register.

Subcode data/DVD header processing

Q-CHANNEL PROCESSING

The 96-bit Q-channel word is accumulated in an internal buffer. Sixteen bits are used to perform a Cyclic Redundancy Check (CRC). Subcode is available via the V4 output and, in addition, the Q channel code can also be read via the SUBREADDATA register.

DVD HEADER

The DVD header processor accumulates a selection of bytes from the beginning of the DVD sector. Two header modes are defined, one for reading the normal sector headers and one for filtering the disk physical format information (from the control data block in the lead-in area) This is controlled by the READ_TOC bit in the DECMODE register.

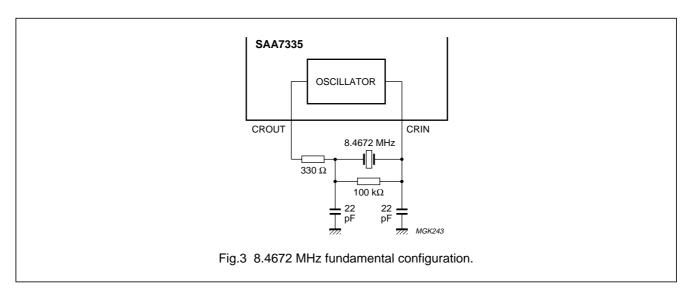
OTHER SUBCODE CHANNELS

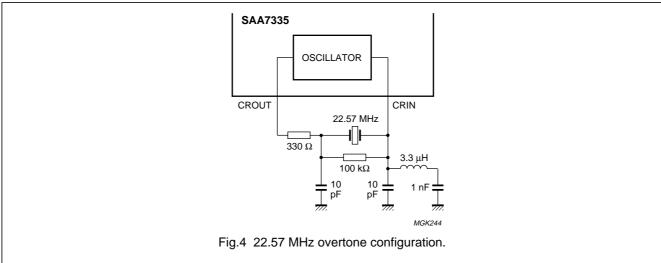
Data of the other subcode channels (Q-to-W) may be read via the V4 pin, this is only valid in CD modes.

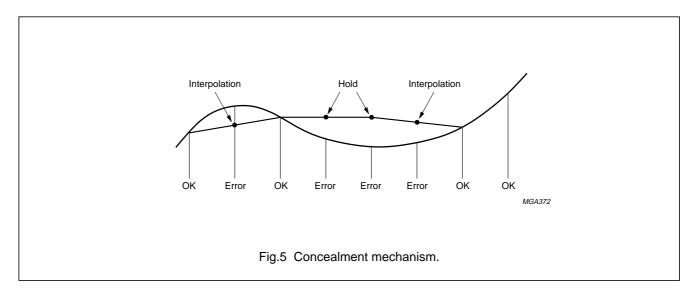
The data on the V4 pin is clocked on the WCLK edges with a fixed delay and so may be clocked by external circuitry running off the WCLK edges, i.e. at twice the WCLK frequency. The subcode data is also available in the EBU output (DOBM) in a similar format.

Crystal oscillator

The crystal oscillator is a conventional 2 pin design. This oscillator is capable of operating with ceramic resonators


and with both fundamental and third overtone crystals. External components should be used to suppress the fundamental output of the third overtone crystals as shown in Figs 3 and 4. Typical oscillation frequencies required are 8.462, 16.9344 or 22.57 MHz depending on the internal clock settings used and whether or not the clock multiplier is enabled.


Error corrector


The error corrector can operate in a number of modes; CD single-pass, CD dual-pass and DVD mode. In the CD single-pass mode the error corrector performs 2 error corrections per frame (C1 and C2). In the CD dual-pass mode up to 4 symbol corrections per frame are possible (C1-C2 then C1-C2 again). For the DVD mode full depth PI and PO error correction is performed allowing 5 corrections per PI row and full depth (2t + e) ≤16 correction to be performed per PO column. The error corrector also contains a flag controller. Flags are assigned to symbols when the error corrector cannot ascertain if the symbols are definitely good. C1 generates output flags which are read (after de-interleaving) by C2, to help in the generation of C2 output flags. The C2 output flags are used by the interpolator for concealment of non-correctable errors. They are also output via the EBU signal (DOBM) and the MISC output via the I²S-bus for CD-ROM applications.

The flags output pin CFLG provides information on the state of all error correction and concealment flags.

SAA7335

DSP for CD and DVD-ROM systems

SAA7335

Audio functions

CONCEALMENT

A 1-sample linear interpolator becomes active if a single sample is flagged as erroneous but cannot be corrected. The erroneous sample is replaced by a level midway between the preceding and following samples. Left and right channels have independent interpolators.

If more than one consecutive non-correctable sample is found the last good sample is held. A 1-sample linear interpolation is then performed before the next good sample (see Fig.5).

DAC Interface

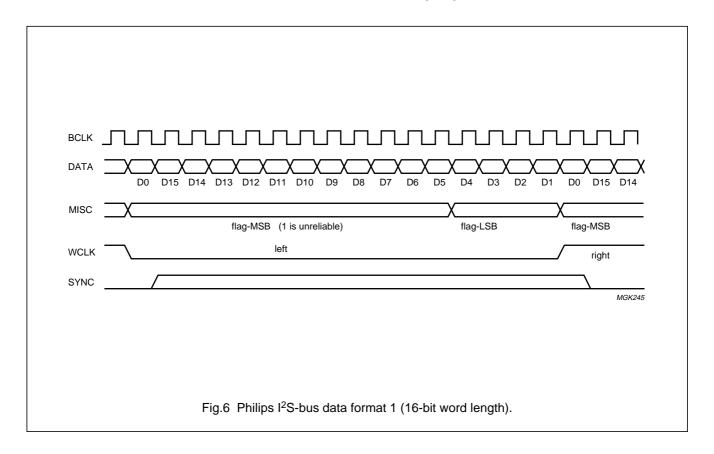
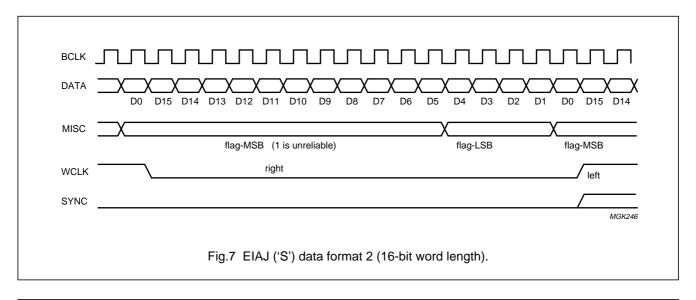
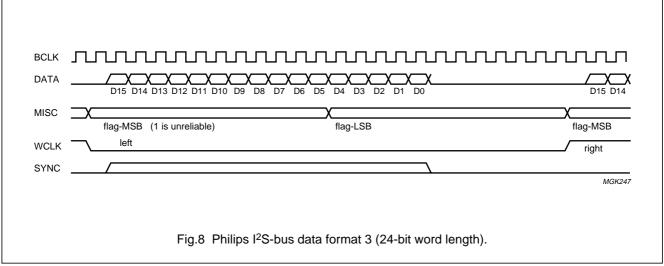
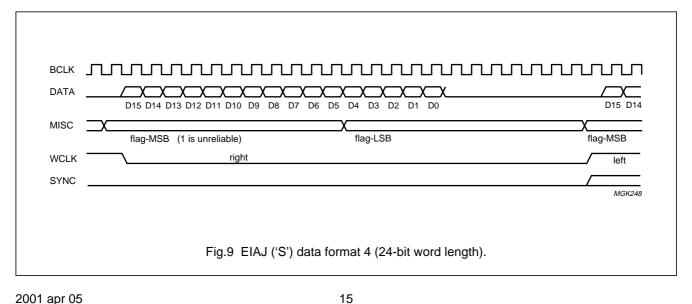
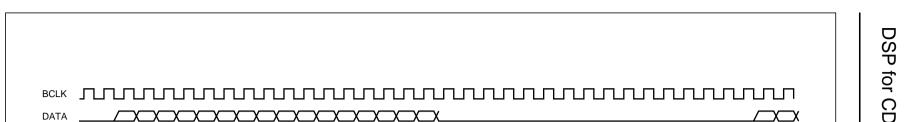

The SAA7335 is compatible with a wide range of ROM block decoders and Digital-to-Analog Converters DACs. The seven main formats that are supported are given in Table 3.

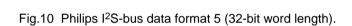
Table 3 DAC interface formats (notes 1, 2 and 3)

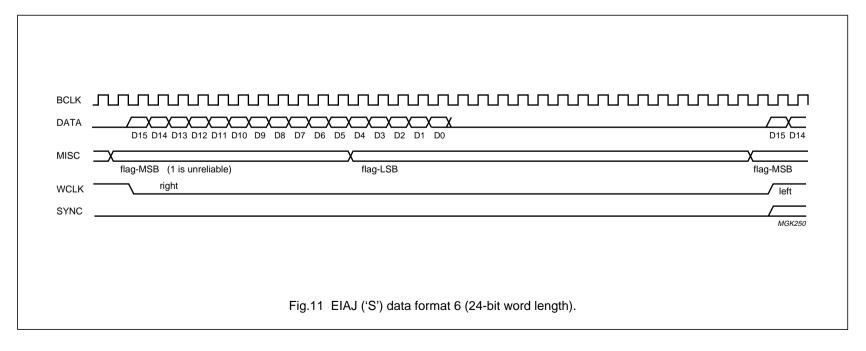

MODE	BITS/WORD	FORMAT
1	16	Philips I ² S-bus
2	16	EIAJ
3	24	Philips I ² S-bus
4	24	EIAJ
5	32	Philips I ² S-bus
6	32	EIAJ
7	variable	Philips I ² S-bus


Notes


- 1. EIAJ is the abbreviation for Electronic Industries Associated of Japan.
- 2. Number of BCLK periods per half WCLK period (i.e. bits per sample).
- 3. Clock gating must be DISABLED for format mode 7.


SAA7335




2001 apr 05

flag-LSB

D15 D14 D13 D12 D11 D10 D9 D8 D7 D6 D5 D4 D3 D2 D1 D0

Philips Semiconductors

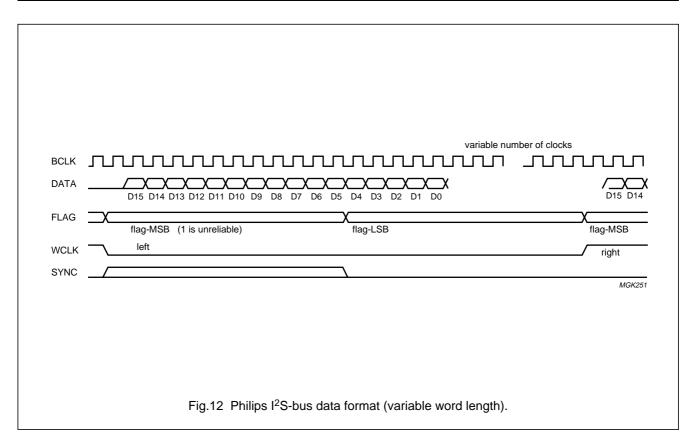
D15 D14

flag-MSB

6

2001 apr 05

MISC


WCLK

flag-MSB (1 is unreliable)

Preliminary specification

SAA7335

SAA7335

EBU interface

The biphase-mark digital output signal at pin DOBM is in accordance with the format defined by the "IEC 958" specification.

Three different modes can be selected via the EBU output control register (address 1010).

FORMAT

The digital audio output consists of 32-bit words (subframes) transmitted in biphase-mark code (2 transitions for a logic 1 and one transition for a logic 0). Words are transmitted in blocks of 384 (see Table 4).

SYNC

The sync word is formed by violation of the biphase rule and therefore does not contain any data. Its length is equivalent to 4 data bits. The three different sync patterns indicate the following situations:

- Sync B: start of a block (384 words), word contains left sample
- Sync M: word contains left sample (no block start)
- Sync W: word contains right sample.

AUDIO SAMPLE

Left and right samples are transmitted alternately.

VALIDITY FLAG

Audio samples are flagged (bit 28 = logic 1) if an error has been detected but was non-correctable. This flag remains the same even if data is taken after concealment.

USER DATA

Subcode bits Q-to-W from the subcode section are transmitted via the user data bit. This data is asynchronous with the block rate.

CHANNEL STATUS

The channel status bit is the same for left and right words. Therefore a block of 384 words contains 192 channel status bits. The category code is always CD. The bit assignment is given in Table 5.

DSP for CD and DVD-ROM systems

SAA7335

Table 4 EBU word format

WORD	BITS	FUNCTION
Sync	0 to 3	-
Auxiliary	4 to 7	not used; normally zero
Error flags	4	CFLG error and interpolation flags when bit 3 of EBU control register is set to logic 1
Audio sample	8 to 27	first 4 bits not used (always zero)
Validity flag	28	valid = logic 0
User data	29	used for subcode data (Q-to-W)
Channel status	30	control bits and category code
Parity bit	31	even parity for bits 4 to 30

Table 5 EBU channel status

WORD	вітѕ	FUNCTION
Consumer/professional	0	always zero
Control	1 to 4	copied from bits 3 to 0 of register OUTPUT2, normally should be set to a copy of CRC checked Q-channel control bits 0 to 3; bit 2 is logic 1 when copy permitted; bit 3 is logic 1 when recording has pre-emphasis
Reserved	5 to 7	always zero
Category code	8 to 15	CD; bit 8 = logic 1, all other bits = logic 0
Reserved	16 to 27	always zero
Clock accuracy	28 to 29	set by OUTPUT2 control register bits 5 and 4; 00 = level II, 01 = level III
Remaining	30 to 191	always zero

Spindle motor control

The spindle motor speed is controlled by a fully integrated digital servo. Address information from the internal ±8 frame FIFO and disc speed information are used to calculate the motor control output signals.

Several output modes are supported:

- 1. Pulse density, 1-line,
- 2. Pulse density, 2-line (true complement output) (cannot be used with tachometer control)
- 3. PWM output, 2-line.

The modes are selected via the motor output configuration register.

PULSE DENSITY MODE

In the pulse density mode the motor output (pin MOTO1) is the pulse density modulated motor output signal. A 50%

duty cycle corresponds with the motor not actuated, higher duty cycles mean acceleration, lower mean braking.

In this mode, the MOTO2 signal is the inverse of the MOTO1 signal. Both signals change state only on the edges of a internal clock signal.

Possible application diagrams are shown in Fig.13.

PWM MODE, 2-LINE

In the PWM mode the motor acceleration signal is put in pulse-width modulation form on the MOTO1 output and the motor braking signal is pulse-width modulated on the MOTO2 output.

Figure 14 illustrates the PWM mode timing and Fig.15 illustrates a typical PWM mode application diagram.

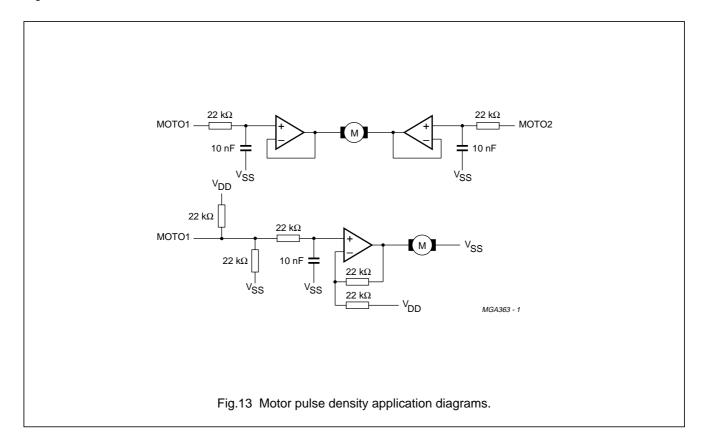
2001 apr 05

DSP for CD and DVD-ROM systems

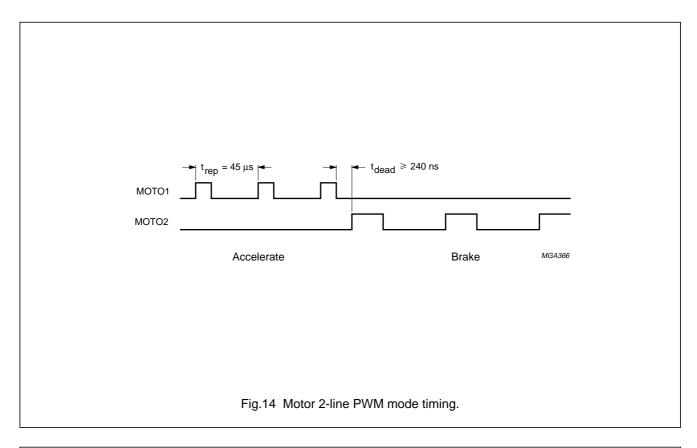
SAA7335

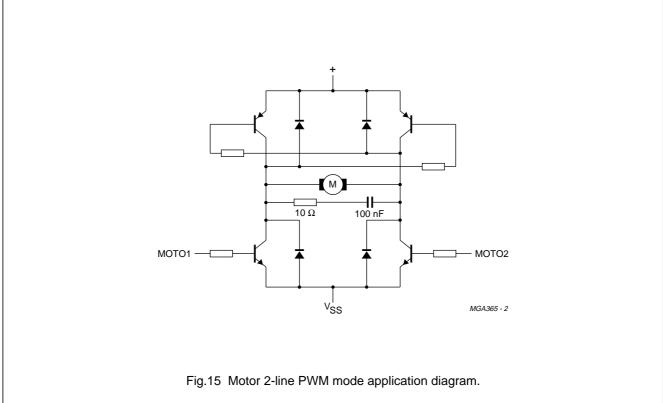
OPERATIONAL MODES

The motor servo has a number of operational modes controlled by the motor mode register MOTOR4.


POWER LIMIT

To start and stop the spindle motor, a fixed positive or negative voltage is applied to the motor. This voltage can be programmed as a percentage of the maximum possible voltage via the motor output configuration register (MOTOR4) to limit current drain during start and stop. The following power limits are possible:


- 100% of maximum (no power limit)
- 75% of maximum
- 50% of maximum
- 37% of maximum.


LOOP CHARACTERISTICS

The gain and crossover frequencies of the motor control loop can be programmed via the motor gain and bandwidth register MOTOR2.

SAA7335

DSP for CD and DVD-ROM systems

SAA7335

Flags output (CFLG) (open-drain output)

A 1-bit flag signal is available at the CFLG pin, this contains 11 bits running off the ADCCLK, each bit period is 7 ADCCLK periods. This signal shows the status of the error corrector and interpolator and is updated every frame.

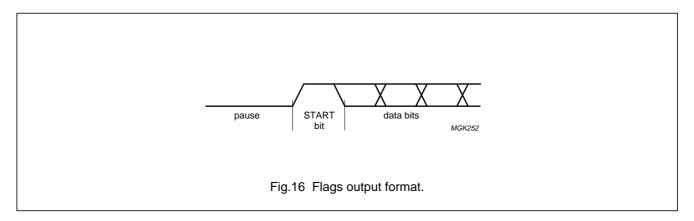


Table 6 Definition of flag bits

BIT NUMBER	VALUE	DESCRIPTION
0	1	START bit
1 to 3	000	C1 first or C1 last; note 1
	001	C2 first, CD mode reserved, DVD mode; note 1
	010	reserved; note 1
	011	C2 last; note 1
	100	corrector not active; note 1
	all others reserved	
4	core fail	failure flag set because correction impossible; note 2
5		flag fail; note 3
9, 6 to 8	root count (3 to 0)	this indicates the number of errors corrected; note 4
10	0	STOP bit

Notes

- 1. For DVD mode read PI for C1 and PO for C2.
- 2. This flag refers to the previous correction frame.
- 3. This flag refers to the previous correction frame (is not valid i.e. always logic 0 in DVD mode).
- 4. Bit order of root count is 9, then 6 to 8 for root count (3 to 0).

ABSOLUTE TIME SYNC

The sync signal is the absolute time sync signal. In the CD mode it is the FIFO-passed subcode sync and relates the position of the subcode sync to the audio data (DAC output). In the DVD mode it indicates the start of a new sector header.

The flag may be used for special purposes such as synchronization of different players.

DSP for CD and DVD-ROM systems

SAA7335

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V_{DDD}	digital supply voltage		-0.3	+6.5	V
V_{DDA}	analog supply voltage		-0.3	+6.5	V
V _{i(max)}	maximum input voltage (any input)	note 1	-0.3	V _{DD} + 0.5	V
V _{o(max)}	maximum output voltage (any output)	note 1	_	V _{DD} + 0.5	V
I _{o(max)}	maximum output current (each output)		_	±10	mA
T _{amb}	operating ambient temperature		-20	+70	°C
T _{stg}	storage temperature		-55	+125	°C
V _{ESD}	electrostatic handling				
	human body model	note 2	-2000	+2000	V
	machine model	note 3	-200	+200	V

Notes

- 1. This maximum value has an absolute maximum of 6.5 V independent of the supply voltage.
- 2. The human body model ESD simulation is equivalent to discharging a 100 pF capacitor via a 1.5 kΩ resistor, which produces a single discharge transient. Reference "Philips Semiconductors Test Method UZW-BO/FQ-A302 (similar to MIL-STD 883C method 3015.7)".
- 3. The machine model ESD simulation is equivalent to discharging a 200 pF capacitor via a resistor and series inductor with effective dynamic values of 25 Ω and 2.5 μ H, which produces a damped oscillating discharge. Reference "Philips Semiconductors Test Method UZW-BO/FQ-B302 (similar to EIAJ IC-121 Test Method 20 condition C)".

QUALITY

This device will meet the requirements of the "Philips Semiconductors General Quality Specification UZW-BO/FQ-0601" in accordance with "Quality Reference Handbook (order number 9397 750 00192)". This details the acceptance criteria for all Q & R tests applied to the product.

DSP for CD and DVD-ROM systems

SAA7335

DC CHARACTERISTICS

 V_{DDD} = V_{DDA} = 5 to 5.5 V; V_{SSD} = V_{SSA} = 0 V; T_{amb} = -20 to +70 °C; unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supplies	1		'	'	'	-1
V_{DDD}	digital supply voltage		4.5	_	5.5	V
V_{DDA}	analog supply voltage		4.5	_	5.5	V
I _{DD(tot)}	total supply current	at 25 MHz clock	_	60	_	mA
Inputs		·	•	•	•	
DIGITAL INPU	TS (TTL LEVEL); note 1					
V _{IL}	LOW-level input voltage		_	_	0.8	V
V _{IH}	HIGH-level input voltage		2.0	_	_	V
V _{OL}	LOW-level output voltage		0.8	_	_	V
V _{OH}	HIGH-level output voltage		_	_	2.4	V
ANALOG INPI	JTS	·		•	•	
V _{I(max)(p-p)}	maximum input voltage (peak-to-peak value)		_	_	2	V
$V_{I(nom)(p-p)}$	nominal input voltage (peak-to-peak value)		_	1	_	V
DR	dynamic range		41	_	_	dB
В	-3 dB bandwidth	0 to 12 dB gain	_	_	_	MHz
		12 to 20 dB gain	_	_	_	MHz
I _{I(AGC)}	AGC input current		_	1	_	mA
I _{I(ADC)}	ADC input current		_	24	_	mA
I _{I(buf)}	output buffer input current		_	3	_	mA
I _{I(tot)}	total input current		_	_	28	mA

Note

AC CHARACTERISTICS

 $V_{DDD} = V_{DDA} = 4.5 \text{ to } 5.5 \text{ V}; \ V_{SSD} = V_{SSA} = 0 \text{ V}; \ T_{amb} = -20 \text{ to } +70 \text{ }^{\circ}\text{C}; \ unless otherwise specified}.$

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supplies						
V _{DDD}	digital supply voltage		4.5	5.0	5.5	V
I _{DDD}	digital supply current	V _{DDD} = 5 V	_	60	165	mA
V_{DDA}	analog supply voltage		4.5	5.0	5.5	V
I _{DDA}	analog supply current	V _{DDA} = 5 V	_	60	165	mA

^{1.} These inputs are analog, V_{IL} and V_{IH} values are quoted as a guide for digital RGB users.

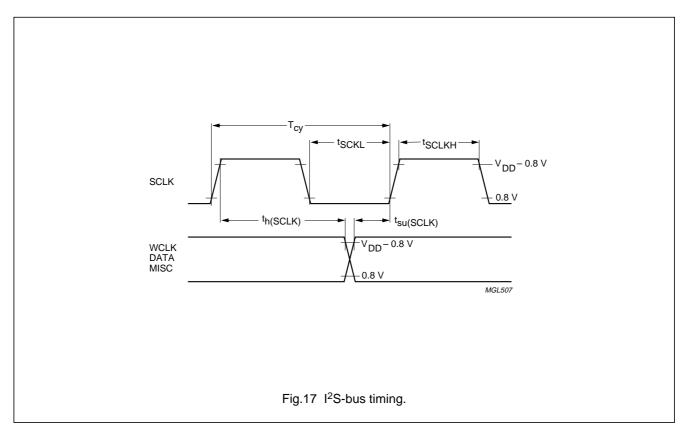
SAA7335

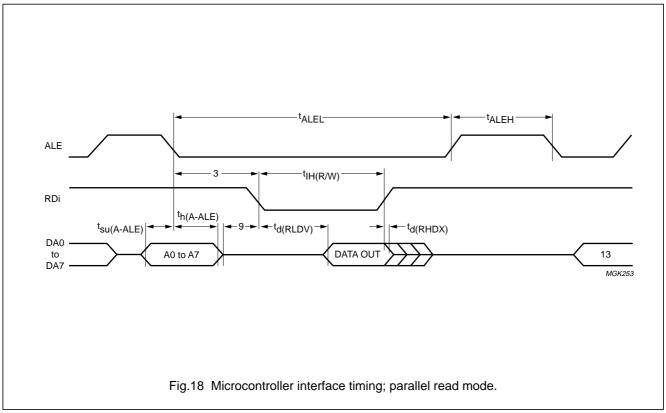
SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT	
Analog from	nt-end (V _{DDA} = 4.5 to 5.5 V); HFIN						
f _{chan}	channel frequency		_	_	50	MHz	
Digital inpu	its		1		<u>'</u>		
V _{IL}	LOW-level input voltage		_	_	0.8	V	
V _{IH}	HIGH-level input voltage		2.0	_	_	V	
ILI	input leakage current	$V_i = 0$ to V_{DDD}	-10	_	+10	μΑ	
Ci	input capacitance		_	-	10	pF	
Open-drain	output; pin INT	•		•		•	
V _{OL}	LOW-level output voltage	I _{OL} = 1 mA	0	_	0.4	V	
I _{OL}	LOW-level output current		_	_	0	mA	
C _L	load capacitance		_	_	50	pF	
t _{o(f)}	output fall time	C _L = 20 pF; note 1	_	_	15	ns	
3-state out	outs	•		•			
V _{OL}	LOW-level output voltage	I _{OL} = 0 mA	0	_	0.4	V	
V _{OH}	HIGH-level output voltage	$I_{OH} = -8 \text{ mA}$	2.4	_	_	V	
C _L	load capacitance		_	_	50	pF	
t _{o(r)}	output rise time	C _L = 20 pF; note 1	_	_	15	ns	
t _{o(f)}	output fall time	C _L = 20 pF; note 1	_	_	15	ns	
I _{LI(Z)}	3-state leakage current	$V_i = 0$ to V_{DDD}	-10	_	+10	μΑ	
3-state out	outs; pins MOTO1, MOTO2 and D	ОВМ					
V _{OL}	LOW-level output voltage	$V_{DDD} = 4.5 \text{ to } 5.5 \text{ V};$ $I_{OL} = 10 \text{ mA}$	0	_	0.8	V	
V _{OH}	HIGH-level output voltage	$V_{DDD} = 4.5 \text{ to } 5.5 \text{ V};$ $I_{OH} = -10 \text{ mA}$	-1	_	+2.4	V	
C _L	load capacitance		_	_	50	pF	
t _{o(r)}	output rise time	C _L = 20 pF; note 1	_	_	10	ns	
t _{o(f)}	output fall time	C _L = 20 pF; note 1	_	_	10	ns	
$I_{LI(Z)}$	3-state leakage current	$V_i = 0$ to V_{DDD}	-10	_	+10	μΑ	
Digital inpu	it/outputs (V _{DDD} = 4.5 to 5.5 V)						
INPUT/OUTPU	JT: SDA (INPUT/OPEN-DRAIN I ² C-BUS	OUTPUT)					
V _{IL}	LOW-level input voltage		_		1.5	V	
V _{IH}	HIGH-level input voltage		3.0	_	_	V	
V _{OL}	LOW-level output voltage	$I_{OL} = 2 \text{ mA};$ $I_{sink} = 3 \text{ mA}$	_	_	0.4	V	
I _{OL}	LOW-level output current		_	_	_	mA	
C _{SDA}	serial data line capacitance		_	_	10	pF	
C _{SCL}	serial clock line capacitance		_		10	pF	
N _{marL}	LOW-level noise margin		_	0.1V _{DDD}	_		
N _{marH}	HIGH-level noise margin		_	0.2V _{DDD}	_		

DSP for CD and DVD-ROM systems

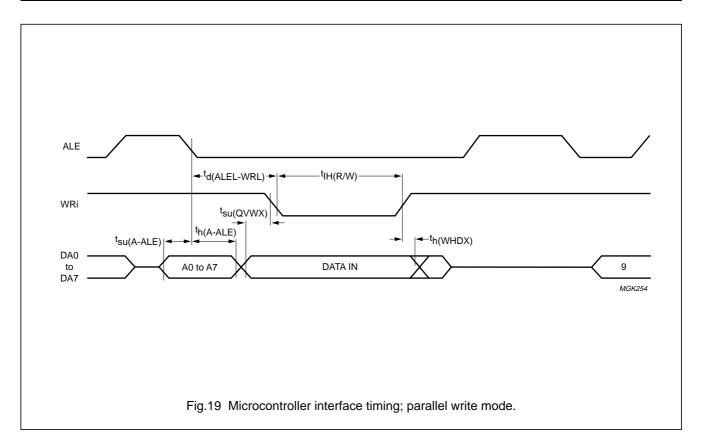
SAA7335

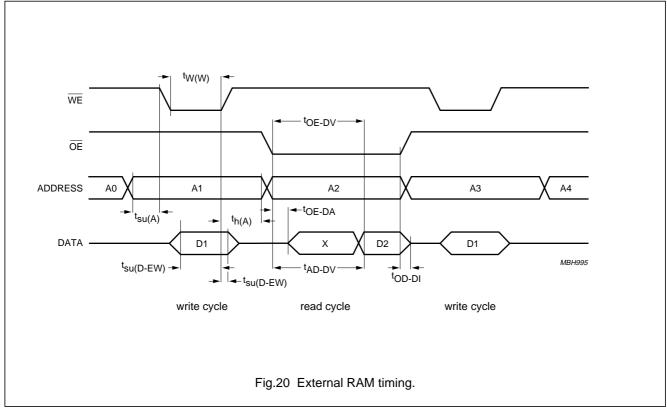
SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT	
R _s	series resistance on the SDA and SCL lines		-	300	-	Ω	
C _{bus(max)}	maximum bus capacitance	per wire	_	400	_	pF	
INPUT: SCL	(CMOS INPUT)						
V _{IL}	LOW-level input voltage		-0.3	_	0.3V _{DDD}	V	
V _{IH}	HIGH-level input voltage		0.7V _{DDD}	_	V _{DDD} + 0.3	V	
I _{LI}	input leakage current	$V_i = 0 - V_{DDD}$	-10	_	+10	μΑ	
C _i	input capacitance		_	_	10	pF	
Crystal osc	illator input CRIN (external clock)		'	•	•		
g _m	mutual conductance at start-up		_	4	_	mS	
R _o	output resistance at start-up		_	11	_	kΩ	
C _i	input capacitance		_	_	10	pF	
I _{LI}	input leakage current		-10	_	+10	μΑ	
Crystal osc	illator output CROUT (see Figs 3 ar	nd 4)	•	•	•		
f _{xtal}	crystal frequency		4	25	_	MHz	
C _{fb}	feedback capacitance		_	_	5	pF	
Co	output capacitance		_	_	10	pF	
I ² S-bus tim	ing			•	•		
Сьоск оитр	PUT SCLK (see Fig.17)						
T _{cy}	output clock period	set by CLKPRE1 register	_	472.4	_	ns	
tsclkh	clock HIGH time		_	-	-	ns	
			_	_	_	ns	
			_	_	_	ns	
t _{SCLKL}	clock LOW time		_	_	_	ns	
			_	_	_	ns	
			_	_	_	ns	
t _{su(SCLK)}	set-up time		_	tbf	_	ns	
			_	tbf	_	ns	
			_	tbf	_	ns	
$t_{h(SCLK)}$	hold time		_	tbf	_	ns	
			_	tbf	_	ns	
			_	tbf	_	ns	


SAA7335


SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
External RA	AM timing (see Figs 18 and 20)		·	'		
t _{AV-DV}	address valid to data valid		_	tbf	_	ns
t _{OE-DV}	output enable to data valid		_	tbf	_	ns
t _{W(W)}	write pulse width		_	tbf	_	ns
t _{su(A)}	address set-up before start of write		_	tbf	_	ns
t _{h(A)}	address hold after end of write		_	tbf	_	ns
t _{su(D-EW)}	data set-up to end of write		_	tbf	_	ns
t _{h(D-EW)}	data hold after end of write		_	tbf	_	ns
t _{OE-DA}	output enable to data active		_	tbf	_	ns
t _{OD-DI}	output disable to data inactive		_	tbf	_	ns
Microcontro	oller interface timing (see Figs 18 and	d 20)				•
INPUT ALE						
t _{su(A-ALE)}	address set-up before ALE LOW		25	_	_	ns
t _{h(A-ALE)}	address hold after ALE LOW		25	_	_	ns
t _{ALEL}	input LOW time		1 × ADC CLK + 15	_	_	ns
t _{ALEH}	input HIGH time		1 × ADC CLK + 15	_	-	ns
t _{d(ALEL-WRL)}	delay time ALE LOW to WR LOW		_	_	_	ns
t _r	rise time		_	_	_	ns
t _f	fall time		_	_	240	ns
INPUTS RDI	AND WRI		•		•	•
t _{IL(R/W)}	input LOW time		1 × ADC CLK + 15	_	-	ns
t _{IH(R/W)}	input HIGH time		1 × ADC CLK + 15	_	-	ns
t _r	rise time		_	_	_	ns
t _f	fall time		_	_	240	ns
READ MODE					•	•
t _{d(RLDV)}	delay time RD LOW to DA0 to DA7 valid		2 × ADC CLK + 35	_	_	ns
t _{d(RHDX)}	delay time RD HIGH to DA0 to DA7 high-impedance		15	_	_	ns
WRITE MODE				•	•	•
t _{su(QVWX)}	set-up time WR LOW to DA0 to DA7		_	_	_	ns
t _{h(WHQX)}	hold time WR HIGH to DA0 to DA7 3-state		2 × ADC CLK + 25	_	_	ns

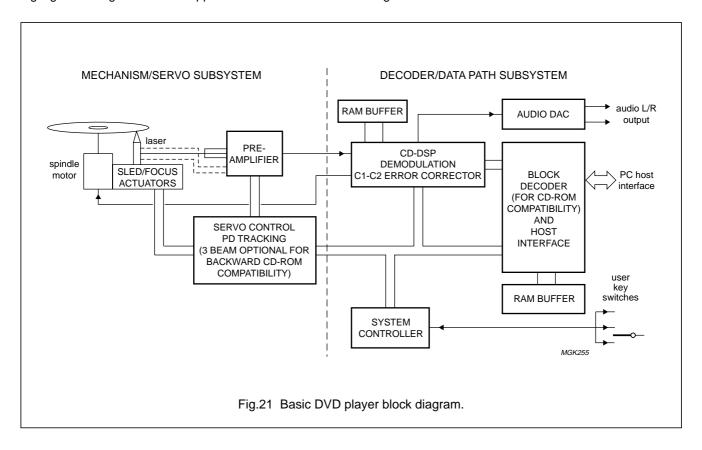
Notes


- 1. Timing reference voltage levels are 0.8 V and $\ensuremath{V_{DDD}} 0.8 \ \ensuremath{\text{V}}.$
- 2. Negative set-up time means that data may change after clock transition.

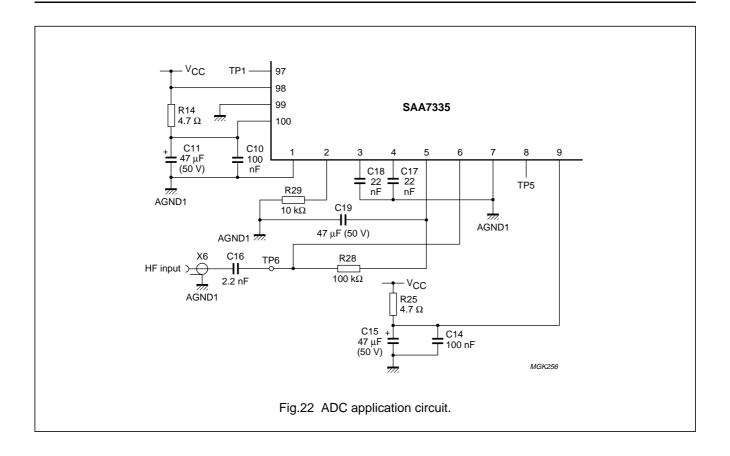

SAA7335

SAA7335

28


2001 apr 05

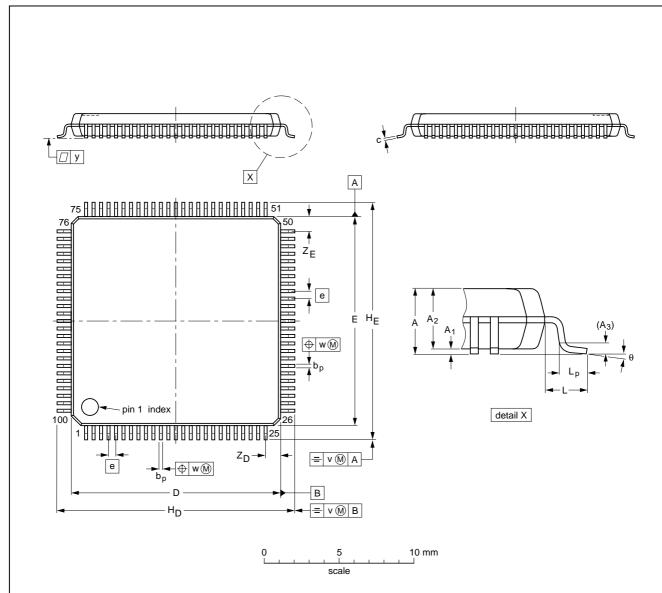
DSP for CD and DVD-ROM systems


SAA7335

APPLICATION INFORMATION

The complete data path chipset consists of two ICs, the CD decoder (or DSP) device and the block decoder/host interface manager. In addition to these components a general purpose microcontroller and tracking servo is necessary to produce a complete controller system for a DVD mechanism. The DSP, block decoder and microcontroller are shown highlighted in Fig.21. An ADC application circuit is illustrated in Fig.22.

SAA7335



SAA7335

PACKAGE OUTLINE

LQFP100: plastic low profile quad flat package; 100 leads; body 14 x 14 x 1.4 mm

SOT407-1

DIMENSIONS (mm are the original dimensions)

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽¹⁾	е	H _D	HE	L	Lp	v	w	у	Z _D ⁽¹⁾	Z _E ⁽¹⁾	θ
mm	1.6	0.15 0.05	1.45 1.35	0.25	0.27 0.17	0.20 0.09	14.1 13.9	14.1 13.9	0.5	16.25 15.75		1.0	0.75 0.45	0.2	0.08	0.08	1.15 0.85	1.15 0.85	7° 0°

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE
SOT407-1	136E20	MS-026				00-01-19 00-02-01

DSP for CD and DVD-ROM systems

SAA7335

SOLDERING

Introduction

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "IC Package Databook" (order code 9398 652 90011).

Reflow soldering

Reflow soldering techniques are suitable for all LQFP packages.

Reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement.

Several techniques exist for reflowing; for example, thermal conduction by heated belt. Dwell times vary between 50 and 300 seconds depending on heating method. Typical reflow temperatures range from 215 to 250 °C.

Preheating is necessary to dry the paste and evaporate the binding agent. Preheating duration: 45 minutes at $45 \, ^{\circ}\text{C}$.

Wave soldering

Wave soldering is **not** recommended for LQFP packages. This is because of the likelihood of solder bridging due to closely-spaced leads and the possibility of incomplete solder penetration in multi-lead devices.

If wave soldering cannot be avoided, the following conditions must be observed:

- A double-wave (a turbulent wave with high upward pressure followed by a smooth laminar wave) soldering technique should be used.
- The footprint must be at an angle of 45° to the board direction and must incorporate solder thieves downstream and at the side corners.

Even with these conditions, do not consider wave soldering LQFP packages LQFP48 (SOT313-2), LQFP64 (SOT314-2) or LQFP80 (SOT315-1).

During placement and before soldering, the package must be fixed with a droplet of adhesive. The adhesive can be applied by screen printing, pin transfer or syringe dispensing. The package can be soldered after the adhesive is cured.

Maximum permissible solder temperature is 260 °C, and maximum duration of package immersion in solder is 10 seconds, if cooled to less than 150 °C within 6 seconds. Typical dwell time is 4 seconds at 250 °C.

A mildly-activated flux will eliminate the need for removal of corrosive residues in most applications.

Repairing soldered joints

Fix the component by first soldering two diagonally-opposite end leads. Use only a low voltage soldering iron (less than 24 V) applied to the flat part of the lead. Contact time must be limited to 10 seconds at up to 300 $^{\circ}$ C. When using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 $^{\circ}$ C.

DSP for CD and DVD-ROM systems

SAA7335

DATA SHEET STATUS

DATA SHEET STATUS(1)	PRODUCT STATUS ⁽²⁾	DEFINITIONS
Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Changes will be communicated according to the Customer Product/Process Change Notification (CPCN) procedure SNW-SQ-650A.

Notes

- 1. Please consult the most recently issued data sheet before initiating or completing a design.
- 2. The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.

DEFINITIONS

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

DISCLAIMERS

Life support applications — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

ICs with MPEG-2 functionality — Use of this product in any manner that complies with the MPEG-2 Standard is expressly prohibited without a license under applicable patents in the MPEG-2 patent portfolio, which license is available from MPEG LA, L.L.C., 250 Steele Street, Suite 300, Denver, Colorado 80206.

DSP for CD and DVD-ROM systems

SAA7335

PURCHASE OF PHILIPS I2C COMPONENTS

Purchase of Philips I^2C components conveys a license under the Philips' I^2C patent to use the components in the I^2C system provided the system conforms to the I^2C specification defined by Philips. This specification can be ordered using the code 9398 393 40011.

SAA7335

NOTES

Philips Semiconductors – a worldwide company

Argentina: see South America

Australia: 3 Figtree Drive, HOMEBUSH, NSW 2140, Tel. +61 2 9704 8141, Fax. +61 2 9704 8139 **Austria:** Computerstr. 6, A-1101 WIEN, P.O. Box 213,

Tel. +43 1 60 101 1248, Fax. +43 1 60 101 1210

Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6, 220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773

Belgium: see The Netherlands **Brazil:** see South America

Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,

51 James Bourchier Blvd., 1407 SOFIA, Tel. +359 2 68 9211, Fax. +359 2 68 9102

Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,

Tel. +1 800 234 7381, Fax. +1 800 943 0087

China/Hong Kong: 501 Hong Kong Industrial Technology Centre,

72 Tat Chee Avenue, Kowloon Tong, HONG KONG, Tel. +852 2319 7888, Fax. +852 2319 7700

Colombia: see South America Czech Republic: see Austria

Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V,

Tel. +45 33 29 3333, Fax. +45 33 29 3905 **Finland:** Sinikalliontie 3, FIN-02630 ESPOO, Tel. +358 9 615 800, Fax. +358 9 6158 0920

France: 7 - 9 Rue du Mont Valérien, BP317, 92156 SURESNES Cedex,

Tel. +33 1 4728 6600, Fax. +33 1 4728 6638

Germany: Hammerbrookstraße 69, D-20097 HAMBURG,

Tel. +49 40 2353 60, Fax. +49 40 2353 6300

Hungary: Philips Hungary Ltd., H-1119 Budapest, Fehervari ut 84/A,

Tel: +36 1 382 1700, Fax: +36 1 382 1800

India: Philips INDIA Ltd, Band Box Building, 2nd floor, 254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,

Tel. +91 22 493 8541, Fax. +91 22 493 0966

Indonesia: PT Philips Development Corporation, Semiconductors Division, Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510,

Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080

Ireland: Newstead, Clonskeagh, DUBLIN 14, Tel. +353 1 7640 000, Fax. +353 1 7640 200

Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053, TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007

Italy: PHILIPS SEMICONDUCTORS, Via Casati, 23 - 20052 MONZA (MI),

Tel. +39 039 203 6838, Fax +39 039 203 6800

Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5057

Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,

Tel. +82 2 709 1412, Fax. +82 2 709 1415

Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,

Marketing Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN,

Tel. +60 3 750 5214, Fax. +60 3 757 4880

Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,

For all other countries apply to: Philips Semiconductors,

Tel. +9-5 800 234 7381, Fax +9-5 800 943 0087

Middle East: see Italy

Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,

Tel. +31 40 27 82785, Fax. +31 40 27 88399

New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,

Tel. +64 9 849 4160, Fax. +64 9 849 7811 **Norway:** Box 1, Manglerud 0612, OSLO, Tel. +47 22 74 8000, Fax. +47 22 74 8341

Pakistan: see Singapore

Philippines: Philips Semiconductors Philippines Inc., 106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI, Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474

Poland: Al.Jerozolimskie 195 B, 02-222 WARSAW, Tel. +48 22 5710 000, Fax. +48 22 5710 001

Portugal: see Spain Romania: see Italy

Russia: Philips Russia, UI. Usatcheva 35A, 119048 MOSCOW,

Tel. +7 095 755 6918, Fax. +7 095 755 6919

Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,

Tel. +65 350 2538, Fax. +65 251 6500

Slovakia: see Austria Slovenia: see Italy

South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,

2092 JOHANNESBURG, P.O. Box 58088 Newville 2114,

Tel. +27 11 471 5401, Fax. +27 11 471 5398 **South America:** Al. Vicente Pinzon, 173, 6th floor, 04547-130 SÃO PAULO. SP. Brazil.

Tel. +55 11 821 2333, Fax. +55 11 821 2382 **Spain:** Balmes 22, 08007 BARCELONA, Tel. +34 93 301 6312, Fax. +34 93 301 4107

Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,

Tel. +46 8 5985 2000, Fax. +46 8 5985 2745 **Switzerland:** Allmendstrasse 140, CH-8027 ZÜRICH,

Tel. +41 1 488 2741 Fax. +41 1 488 3263

Taiwan: Philips Semiconductors, 5F, No. 96, Chien Kuo N. Rd., Sec. 1, TAIPEI, Taiwan Tel. +886 2 2134 2451, Fax. +886 2 2134 2874

Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,

60/14 MOO 11, Bangna Trad Road KM. 3, Bagna, BANGKOK 10260,

Tel. +66 2 361 7910, Fax. +66 2 398 3447

Turkey: Yukari Dudullu, Org. San. Blg., 2.Cad. Nr. 28 81260 Umraniye,

ISTANBUL, Tel. +90 216 522 1500, Fax. +90 216 522 1813

Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,

252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461

United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes, MIDDLESEX UB3 5BX, Tel. +44 208 730 5000, Fax. +44 208 754 8421

United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,

Tel. +1 800 234 7381, Fax. +1 800 943 0087

Uruguay: see South America **Vietnam:** see Singapore

Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,

Tel. +381 11 3341 299, Fax.+381 11 3342 553

Internet: http://www.semiconductors.philips.com

The Netherlands, Fax. +31 40 27 24825

© Philips Electronics N.V. 2001 SCA72

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Printed in The Netherlands

753503/02/pp36

Date of release: 2001 apr 05

Document order number: 9397 750 08202

Let's make things better.

